IR near-field spectroscopy and imaging of single Li(x)FePO4 microcrystals.

نویسندگان

  • I T Lucas
  • A S McLeod
  • J S Syzdek
  • D S Middlemiss
  • C P Grey
  • D N Basov
  • R Kostecki
چکیده

This study demonstrates the unique capability of infrared near-field nanoscopy combined with Fourier transform infrared spectroscopy to map phase distributions in microcrystals of Li(x)FePO4, a positive electrode material for Li-ion batteries. Ex situ nanoscale IR imaging provides direct evidence for the coexistence of LiFePO4 and FePO4 phases in partially delithiated single-crystal microparticles. A quantitative three-dimensional tomographic reconstruction of the phase distribution within a single microcrystal provides new insights into the phase transformation and/or relaxation mechanism, revealing a FePO4 shell surrounding a diamond-shaped LiFePO4 inner core, gradually shrinking in size and vanishing upon delithiation of the crystal. The observed phase propagation pattern supports recent functional models of LiFePO4 operation relating electrochemical performance to material design. This work demonstrates the remarkable potential of near-field optical techniques for the characterization of electrochemical materials and interfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in Li<sub><italic>x</italic></sub>FePO<sub>4</sub>

The performance of battery electrode materials is strongly affected by inefficiencies in utilization kinetics and cycle life as well as size effects. Observations of phase transformations in these materials with high chemical and spatial resolution can elucidate the relationship between chemical processes and mechanical degradation. Soft X-ray ptychographic microscopy combined with X-ray absorp...

متن کامل

SnCl4/nano-sawdust as an Efficient Bio-based Catalyst for the Synthesis of 2-Substituted Benzothiazoles and Benzimidazoles

SnCl4/nano-sawdust was prepared as a carbohydrate-based catalyst containing of tin bearing cellulose units. The catalyst was characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). The catalyst was applied successfully as a readily available, inexpensive, biodeg...

متن کامل

Localized concentration reversal of lithium during intercalation into nanoparticles

Nanoparticulate electrodes, such as Li x FePO4, have unique advantages over their microparticulate counterparts for the applications in Li-ion batteries because of the shortened diffusion path and access to nonequilibrium routes for fast Li incorporation, thus radically boosting power density of the electrodes. However, how Li intercalation occurs locally in a single nanoparticle of such materi...

متن کامل

Imaging molecular crystal polymorphs and their polycrystalline microstructures in situ by ultralow-frequency Raman spectroscopy.

Ultralow-frequency Raman spectroscopy that can measure vibrational bands at as low as ±10 cm(-1) has enabled facile in situ imaging of polycrystalline microstructures such as grains and grain boundaries with high polymorph specificity. We demonstrate this method by investigating microcrystals of two distinct polymorphs of 1,1'-binaphthyl using a microscope.

متن کامل

High-resolution near-field Raman microscopy of single-walled carbon nanotubes.

We present near-field Raman spectroscopy and imaging of single isolated single-walled carbon nanotubes with a spatial resolution of approximately 25 nm. The near-field origin of the image contrast is confirmed by the measured dependence of the Raman scattering signal on tip-sample distance and the unique polarization properties. The method is used to study local variations in the Raman spectrum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2015